
argon

Stable	Atomic mass*	Mole
isotope		fraction
³⁶ Ar	35.967 545 11	0.003 365
^{38}Ar	37.962 7324	0.000 632
40 Ar	39.962 383 12	0.996 003

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Important applications of stable and/or radioactive isotopes

Isotopes in geochronology

- 1) Argon is used to date various rock samples, especially volcanic rocks, using two different techniques.
 - a. The first technique is potassium-argon dating (K-Ar), which is possible because ⁴⁰K decays at a constant rate and produces stable ⁴⁰Ar. By determining how much ⁴⁰Ar has been produced, it is possible to determine an approximate age for rocks.
 - b. The second technique, which is newer and more accurate for dating, is the 40 Ar/ 39 Ar technique that allows a sample to be irradiated to produce 39 Ar from 39 K. The 40 Ar/ 39 Ar ratio is then determined and from this, the approximate age of the rock can be found.

Figure 1: An Argon mass spectrometer in a lab dedicated for ⁴⁰Ar/³⁹Ar measurements.

Isotopes as environmental tracers

- 1) Argon's non-reactive properties make it an ideal tracer. The ⁴⁰Ar/³⁶Ar ratio allows scientists to learn more about the evolution of the atmosphere and provides insight about the orogenic evolution of the earth by studying the ratios over time.
 - a. For example, the ⁴⁰Ar/³⁶Ar ratio can be indicative of the movement, mixing, and origins of volcanic materials as well as crust/mantle interactions.
- 2) The ⁴⁰Ar/³⁹Ar ratio is sensitive to temperature and can therefore, provide information about geologic temperature history.
- 3) ⁴⁰Ar can also be used in conjunction with other elements to determine past temperatures.

Figure 2: Studying the ratios of argon isotopes can provide insight into the origins and movement of magma.

Isotopes in hydrology

- 1) The study of ³⁷Ar, ³⁹Ar and ⁴⁰Ar concentrations in groundwater can help determine information about the in situ production and release of these isotopes from rocks and other sources into groundwater as well as determine the age of the groundwater.
- 2) ⁴⁰Ar/³⁶Ar ratios can be studied in groundwater to determine hydrological information, such as rates of crustal degassing and determining groundwater age.

Figure 3: The Great Artesian Basin, Australia, was a site of argon isotope analysis where ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios were studied to determine amounts of excess ${}^{40}\text{Ar}$ and find rates of crustal degassing.

Isotopes in medicine

1) ³⁸K, which is produced by a nuclear reaction involving ³⁸Ar and ⁴⁰Ar as targets, is a widely used blood flow tracer. Because ³⁸Ar is more expensive, ⁴⁰Ar, which also offers many additional advantages as a target, is more commonly used to produce ³⁸K for medical purposes.

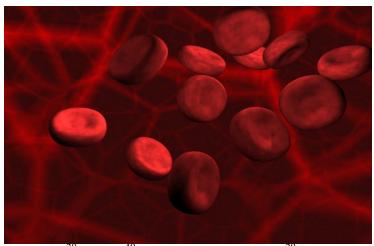


Figure 4: ³⁸Ar and ⁴⁰Ar are used to produce ³⁸K, which is used as a blood flow tracer.

Isotopes in industry

1) ⁴¹Ar, which is produced by ⁴⁰Ar, is used as an industrial gas flow tracer since its inert properties, half life, and gamma radiations make it well suited for this purpose.

Figure 5: Argon Regulator.